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Abstract. Under the current Energy Performance of Buildings Directive, EU countries must set building energy 
renovation as a goal for future development of the cities. The 22@ district of Barcelona is one of the most thriving 
innovation districts of Europe with an increasing market for office buildings. In this framework, the present paper 
evaluates the effectiveness of a series of strategies considered the real case project of the energy retrofit of an 
existing building in 22@. In particular, the study presents the results of different scenarios of building retrofits, 
where simulations of dynamic envelopes are performed, with the inclusion of a conventional ventilated façade, 
Living Green Walls and Phase Change Material (PCM) for thermal energy storage. The different scenarios are 
compared in terms of energy performance, enhanced comfort and cost-benefit analysis. The benefits of latent 
thermal energy storage, improved thermal inertia and evapotranspiration of the vegetated elements are also 
assessed. Eventually this study helps understanding the feasibility of the implementation of the nZEB standard in 
energy retrofit of buildings in the specific context of Barcelona and Spain. 

1. Introduction
The massive urban development is altering the land surface by concentrating materials which effectively 
retain heat and create impervious surfaces, thus affecting urban local climate and urban hydrology. 
Moreover, tall buildings provide multiple surfaces for the absorption of solar radiation that is 
subsequently reradiated as heat, thus enhancing the efficiency with which urban areas are warmed up 
[1]. Building renovation is a main issue of recent European policies towards energy efficiency. Today’s 
renovation projects have the challenges of improving the energy efficiency in order to reach the goals 
of zero emission in the building sector while improving their social and economic value, securing a 
sustainable use of resources [2] and minimizing the deleterious effects of buildings in the urban 
environment. The renovation of the building envelope, are a key factor in the energy rehabilitation of 
buildings and the urban environment. This paper describes three renovation strategies: living walls, 
ventilated facades with fibre-cement cladding and ventilated facades with PCM materials [3,4,5]. 

2. Case study
The city of Barcelona and the Association 22@ Network is promoting the restoration of so-called 
“medianera” walls in the 22@ district. These walls are fully opaque boundary walls that will remain 
exposed and no future adjoining construction will be allowed by the Barcelona urban planning. These 
areas belong to the public urban space, and can be restored to bring social value and cultural identity to 
the urban space of the city. 
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Figure 1. Visualization of the case study. 

 
The project “Medianera Verde” (figure 1), or green boundary wall, is a real case retrofit project that 
proposes an architectural and business model for the restoration of these urban spaces. The façade 
selected for the intervention is oriented to South-West and is composed of a standard 30 cm non load-
bearing masonry wall with a 5 cm air gap and 3 cm of insulation. The project proposes the addition of a 
green living wall, in the lower part of the building, to establish a continuity of vegetation with the 
existing public space, and a modular ventilated façade on the upper part. The module consists of a 
photovoltaic panel (PV) module and an opaque panel (figure 2). This particular configuration is meant 
to represent the flourishing presence of industrial and commercial companies and start-ups in the 22@ 
district. The design integrates the business model of this solution where multiple investors can contribute 
assuming the costs of one or more modules and personalize it according to their marketing strategy and 
express so their social responsibility and focus on sustainability. The estimated construction cost is 
provided for each of the considered options: the green living wall cost is 366,2 €/m2, the ventilated 
façade cost is 109,6 €/m2, and the façade with PCM cost is 137,8 €/m2. 

 
Figure 2. Modular unit of the ventilated facade/ Green Living Wall. 

 
3. Methodology  
The decision-making of the project was supported by a set of energy simulations that allowed comparing 
different scenarios. The simulation model represents a typical floor plan of the building (figure 3), 
consisting of two apartments of 77 m2 connected by an unconditioned zone. The opaque boundary wall 
is modelled as a thermal zone, classified in Energy Plus as cavity and calculated with the algorithm 
based on the ISO 15099 standard for narrow vertical cavities. 
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Figure 3. Energy simulation model. 
 

In order to determine the suitability of the application of different façade solutions to the case study, 
three different strategies of façade renovation are considered and compared to each other: 

1) Ventilated façade with fibre-cement cladding (VF). A standard ventilated façade with 
aluminium substructure and fibrocement board cladding.  

2) Living Green Wall incorporated in the outermost layer of a ventilated façade (GW). The 
substructure of the Living Green Wall is the same as the previous case. The Living wall system 
is consisting of a 100% recycled polyethylene board, a felt membrane to regulate water and 
humidity levels and a geotextile membrane with 15cm x 20cm x 5cm pockets containing the 
green substrate. The system counts with irrigation system and an integrated monitoring and 
management system, which ensures in each panel the best operating conditions for the green 
substrate and the minimum use of water. 

3) Ventilated façade with a layer of PCM on the external surface of the existing wall. The PCM is 
the BioPCM M182Q25 where 182 is the heath storage capacity in Btu/ft2 and 25ºC is the phase 
change temperature. The parameters considered for each strategy are described in the following 
table.   

 
Table 1. Renovation strategies. 

 Description Existing Wall 
thickness 
 [m] 

Cavity width  
[m]  

Outer layer 
[m] 

U value 
[W/m2K] 

VF Ventilated façade,  
fibrocement cladding 

 
0.30 0.08 0.14 0.58 

GW Living Green Wall, ventilated 
façade with vegetation 

0.30 0.08 0.03 0.58 

PCM Ventilated façade with PCM 0.37 0.08 0.03 0.58 
 
The U-value has been set-up equivalent for all three options in order not to influence the results. The 
energy performance of the three proposals is evaluated through energy simulation with EnergyPlus, 
carried out from the 22nd to the 28th of June. The Energy plus built- in model used to simulate the green 
façade was developed for low-sloped exterior surfaces (roofs). However, it can be an approximate model 
of green walls by bearing in mind that the irrigation would behave differently to roofs.  Since in the real 
case living wall the irrigation is maintained at optimal conditions through a monitoring system, the 
model is a reasonable approximation. In the Barcelona’s living wall, the selected plant was Ficus 
Repens, considered in its mature stage (average height of 0.25 m, Leaf Area Index of 2.7, minimum 
stomatal resistance 180 s/m). The leaf emissivity was 0.95 while the leaf reflectivity was calculated from 
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the biological model PROSPECT-D [6], a software that calculates the leaf spectral transmittance based 
on the leaf pigment content (chlorophylls, carotenoids, and anthocyanins). The resulting leaf reflectivity 
coefficient was 0.22. For the substrate layer, a thickness of 0.06m was considered. For dry conditions 
of the substrate, the density is about 1800 kg/m3, the thermal conductivity 1.18 W/m-K, and the specific 
heat at constant pressure 1250 J/kg-K. The ability of the soil to retain water was considered through two 
variables: the saturation volumetric moisture content of the soil layer set at a value of 0.5 m3/m3, 
corresponding to a saturated substrate, and the residual volumetric moisture content of the soil layer of 
0.01 m3/m3. This value is used to calculate the hourly stomatal resistance of the plant [7]. The initial 
volumetric moisture content of the soil layer is 0.5. The irrigation is set to 0.0018 m3/h-m2, regardless 
of the current moisture state of the soil. The monitored irrigations system will maintain these values 
constant to ensure the correct functioning of the system and decrease maintenance costs.  
 
4.Results  
4.1 Cavity air and radiant temperature 
In the first simulation (figure 4), air temperature and radiant temperature were studied in the cavity space 
of the ventilated facade. While there was only slight but consistent difference in the air temperature, it 
is the radiant temperature that shows the difference in the three studied options. While the radiant 
temperature in the cavity for the VF and PCM options is significantly higher than the Exterior dry-bulb 
temperature, up to 9.36°C for VF and up to 6.25°C for PCM, in the GW option it remains mostly below.  
 

 
Figure 4. Cavity air temperature and radiant temperature. 

In the VF and PCM options, no significant delay can be found, while in the radiant temperature observed 
in the cavity for the GW option, occurs a time delay of up to four hours in the peak of the temperature.  
 
4.2 Surface temperature on exiting wall faces 
The surface temperature on both faces of the existing wall were studied in order to better understand the 
impact of the three solutions to the thermal zone (figure 5).  
 

 
Figure 5. Surface temperature ant the outside and inside face of the original wall. 
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The surface temperature on the inside face of the wall is strongly influenced by the fact that the interior 
space is set up as air-conditioned, therefore quite constant surface temperature is achieved. However, 
the lowest temperatures can be observed for the GW option and highest temperatures for the VF option.  
The average temperature difference in this case is 2,54°C. The PCM system has different behavior, 
where the maximum surface temperatures become only slightly higher than the exterior temperature (by 
0,68°C in average) during the day period (8:00-20:00), while it remains much warmer (by 2,47°C in 
average) during the night period (20:00-8:00). The exterior face of the wall in the GW system becomes 
colder than the previous two cases during the night hours (by 1,49°C in average), and it becomes colder 
than the exterior dry-bulb temperature during the day hours (by 1,05°C in average). There is a time delay 
in all three cases.  
 
5. Discussion and Conclusions 
The study presents the analysis of three façade typologies included in the project for the 22@ Green 
Wall. These analyses were used as part of the decision making of the project and helped obtaining the 
final configuration of the façade. The analysis of the air and radiant temperature in the cavity of the three 
ventilated façades showed a significantly better behaviour for the GW where the air and the radiant 
temperature was found more than 1ºC lower than the outside dry-bulb temperature, showing 
a significant effect of the evapotranspiration of the green substrate. The air temperature of the cavity in 
the PCM case resulted about 1.5-2ºC lower than the VF case but not lower than the outside dry-bulb 
temperature. This is caused by the phase change of the material that shows a frequency of activation 0f 
35%, that is the percentage of time in which the PCM undergoes phase change. In the GW case the air 
temperature in the cavity results the lowest of the three cases and even lower than the exterior 
temperature. The benefit of the GW is significantly higher than the other two solutions. The energy 
demand for coolinh of the zone studied was reduced by a 14% with the application of the GW whereas 
there wasn’t any significant improvement in the other two cases. The effect of the evapotranspiration of 
the plants, the shading effect of the leaves and the increased thermal mass of the envelope are considered 
as the main cause of the improved performance of the GW compared to the other two ventilated façades 
studied in this paper. Furthermore, considering the Living Green Wall, the implementation of IOT 
technology helps minimizing the use of water down to 0,5 liters/m2, much less compared to 
conventional systems that have an average nominal water consumption between 2 and 6 liters/m2. 
Therefore, the green substrate has a stable hygrothermal conditions with here proven significant benefits 
on the thermal performance of the façade and allowing more predictable energy simulations with the 
energy plus green roof model. This system gives an important contribution during the maintenance phase 
when green walls often show a significant cost. This aspect will be relevant during the operational phase 
to verify the precision of the simulation algorithm for green roofs used in vertical surfaces. Based on 
these results, the living wall façade was chosen to be a consistent part of the façade, due to its better 
performance compared to the other solutions presented. This aspect was crucial since the cost of the 
living wall is considerably higher compared to a conventional ventilated façade (366,2 €/m2 compared 
to 109,6 €/m2 in the studied case). The PCM however showing little improvements in reducing the air 
temperature of the cavity, as confirmed in previews research, it didn’t improve the energy performance 
of the zones and it is not a cost-effective solution (137,8 €/m2 in the studied case) for exterior envelopes; 
its application was discarded from the project. As a general conclusion, the use of living walls in urban 
retrofit projects could be an interesting solution in case of low efficient buildings since it can efficiently 
replace the use of thermal insulation with substantial benefits in summer for buildings energy 
performance and for the exterior urban environment. In the case of Barcelona this walls are considered 
public spaces, so the construction and maintenance is not charged to the building’s occupants. 
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